Sudeep Goswani, Tempo Automation
MEDdesign

Why Software-Powered Electronics Manufacturing is Advancing the Medtech Industry

By Sudeep Goswami
Sudeep Goswani, Tempo Automation

Software-powered PCBAs can help medical device engineers generate high-quality prototypes for complex electronics products in record speed.

Electronics manufacturing is experiencing radical change for the first time in decades. While the traditional engineering cycle from design to manufacturing can take months or even years, smart manufacturing practices are empowering engineers to bring their designs from concept to prototype more quickly, thus, enabling them to experiment and innovate more often. Driven by aggressive deployment and production cycles, engineers developing prototype electronics for critical systems in medical technology need the ability to rapidly iterate on their designs.

The medical technology industry is growing rapidly and is a critical part of the larger global healthcare field. The global medical technology industry’s market size (as of 2019) is $430 billion, according to Statistica. As medical treatments, systems operations and preventative care become more technology-based, there is a higher demand for electronics prototypes and the use of materials and assembly methods like 3-D printing and printed circuit boards (PCBs). These products require fast development and turnover to meet the highly competitive, growing medical technology market. To meet these demands, medical device engineers require the ability to generate high-quality prototypes for complex electronics products in record speed—a process that can be achieved more quickly through the process of software-powered PCBA (printed circuit board assembly) manufacturing.

Sudeep Goswani, Tempo Automation
Sudeep Goswani, Tempo Automation

How Does PCBA Play a Role in Medical Technology?

From technology like electroceuticals (referring to the concept of delivering pharmaceuticals to patients via small electronic implants) to new sensors-based wearables that track the activity of patients, medical technology is evolving to rely more heavily on embedded computing to provide new levels of functionality. Over the last couple of years, a number of innovative medical devices have been introduced to the market to aid medical practitioners in performing testing that was traditionally limited to large medical facilities.

At the heart of the advancements being made in the medtech field are the PCBs found within electronic medical devices, much of which have to do with the flexibility, durability and reliability of PCBAs. And as technology has matured in healthcare, PCBs have become increasingly important to the development of new devices; the internal computers are often so small that they require high-density interconnect (HDI) PCBs to properly function. These PCBs can be found in anything from a pacemaker or heart monitor, to MRI and CT scanner equipment.

It is imperative for engineers working on new medical technology to be able to produce more iterations of their designs with efficiency, accuracy and speed. Many of these life-saving medical devices (i.e., pacemakers), require several iterations of prototype and design, as well as thorough QC checks before they can hit the market. The faster that engineers and designers from medtech manufacturing companies are able to receive prototypes back and learn from data provided to them through the manufacturing process, the faster they are able to make valuable changes that ultimately create better end-products and further advance the medtech field.

The legacy contract manufacturing (CM) process for PCBA utilizes what is known as the black box approach—a slow process that offers little-to-no insight on the outcome of their designs prior to manufacture and one that can take weeks or months to complete. With a black box approach, PCBA design and manufacturing requires considerable time to make corrections to the design files before the board layout specifications are synchronized with the equipment capabilities and processes of the CM. A white box approach, on the other hand, utilizes software-powered electronics manufacturing and data to fill the communications gap between engineers and CMs by providing information gleaned directly from the connected factory floor and software to accelerate the end-to-end PCBA process.

Advancing Medtech Electronics with Smart Manufacturing

The white box approach leverages software and smart manufacturing, using a network of connected devices on both the front and back end of the PCBA process to automate the flow of information in a continuous cycle of design, build and test. A PCBA smart factory that connects customer engagement, order processing, parts sourcing, factory operations, and shipment of finished PCBAs into one continuous cycle is the future of prototype electronics manufacturing for medtech and other industries. The ability to build and deliver high complexity PCBAs in just days instead of the weeks typical of other manufacturers often cuts the total project time in half, and by leveraging software on both the user front-end for quoting and ordering, and on the backend for factory operations, a smart factory is able to create an unbroken data flow from customer to manufacturer.

GE Healthcare is one example of the power of smart manufacturing in accelerating the production of PCBA for medical product design. The GE Healthcare Microscopy Imaging Systems team needed to manufacture a set of complex designs and construction and programming of a test fixture for design testing. For GE Healthcare, quality and precision are very important, as the products they make contribute to life-saving discoveries by hospitals, research laboratories, institutes and universities. These high standards can only be achieved when their engineering teams have time to quickly fail and iterate.

Before working with a smart factory CM, the team had to routinely wait up to an entire month to receive finished boards back and even longer for new designs. These long wait times compromised their chances of meeting design deadlines. Using a software-based smart PCBA manufacturing approach, GE Healthcare was able to receive complex boards back within five days, which significantly shortened the “fail and iterate” process. Being able to fail faster had a direct impact on the team’s timeline and resulted in a better-quality prototype—for both the testing and revision process as well as the final product.

Due to strict compliance rules from the FDA and other medical regulatory bodies, PCBA for medical devices requires the ability to design, build and test until the device meets a set of strict performance requirements such as reliability, quality, safety and other factors. Innovation in medical device development is guided by functionality and capabilities; however, cost-effectiveness is also a consideration. Therefore, developing the highest quality boards possible that will result in high production yield rates should also be a priority for your design. Engineering teams should consider switching to a new model of design and development for PCBAs that leverage software and automated systems to not only provide PCBs back quicker but also offer data that can provide important insight into their design process and product lifecycle.

According to a report from iConnect007, the global PCB market is expected to reach $89.7 billion within the next five years. The medical device industry is one of the key players in the PCB market and attributes a great deal to the recent growth. The implementation of PCBs in medical devices and the need for faster PCBA timelines will continue to expand as the technology grows. To help further expedite this growth, engineering teams and key decision-makers alike for medtech manufacturers should consider a more streamlined approach to electronics development using software-powered smart manufacturing.

About The Author

Sudeep Goswani, Tempo Automation